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A clustering fuzzy approach for image segmentation
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Abstract

Segmentation is a fundamental step in image description or classi1cation. In recent years, several computational models
have been used to implement segmentation methods but without establishing a single analytic solution. However, the intrinsic
properties of neural networks make them an interesting approach, despite some measure of ine5ciency. This paper presents
a clustering approach for image segmentation based on a modi1ed fuzzy approach for image segmentation (ART) model.
The goal of the proposed approach is to 1nd a simple model able to instance a prototype for each cluster avoiding complex
post-processing phases. Results and comparisons with other similar models presented in the literature (like self-organizing
maps and original fuzzy ART) are also discussed. Qualitative and quantitative evaluations con1rm the validity of the approach
proposed.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Segmentation is an essential issue in image description
and/or classi1cation. It is based on a de1nition of uniformity,
which usually depends on the particular task at hand and
its context [1]. Informally, we refer to this process as one
that splits an image into a set of non-overlapping uniform
connected regions such that any two adjacent ones are not
similar.

Many di@erent segmentation approaches have been de-
veloped that cannot be generalized under a single scheme.
Interesting surveys can be found in Refs. [2–4]. According
to Ref. [2], most approaches are based on similarity and dif-
ference and, particularly, can be divided into di@erent cat-
egories: thresholding [5], clustering [6–8], edge detection
[9,10] and region extraction [11]. In this paper, we propose
a clustering based approach.

∗ Corresponding author. Tel.: +39-06-4991-8508; fax: +39-06-
8419188.

E-mail address: clinque@dsi.uniroma1.it (L. Cinque).

Clustering methods analyze a vectorial input space,
so, when an image is given, a pre-processing step is re-
quested to calculate a feature vector for each pixel. These
n-dimensional vectors (usually called patterns) are evalu-
ated on the basis of the pixel values of a limited region.
Similar vectors will be associated to pixels belonging to the
same region while di@erent ones will be assigned to corre-
sponding pixels belonging to di@erent regions. This means
that these vectors, in an Euclidean space, characterize a
number of clusters, one for each region. Our method 1nds
these clusters and classi1es all pixels under the same label.
The segmentated image is found by mapping the vectors
back to the pixels. Clustering ignores spatial information,
so that we could have disconnected regions under the same
label (i.e. it discriminates between di@erently perceived
regions and not between similar ones).

Several computational models have been adopted to im-
plement segmentation methods. Neural networks can be con-
sidered an interesting approach due to their properties: par-
allelism could allow real-time systems to be used, increase
fault tolerance in knowledge distribution (and critical sce-
nario applications), further reduce the time taken to learn
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and enhance the ability to work in noisy real scenarios. Some
neural network applications for image segmentation can be
found in Ref. [4].

Models usually used for clustering are the self-organizing
maps (SOM) [12] and the adaptive resonance theory archi-
tecture family (ART) [13]. Examples of SOM applications
to image segmentation can be found in Refs. [14–17]. In
Ref. [14], a SOM is used to segment gray level images (fea-
ture vectors include gray level, mean and variance). In Refs.
[16,17], a SOM is used to segment color images (feature
vectors are characterized by color and texture parameters).
In all these works, SOM implies some constraints: the need
to choose the number of clusters a priori, heavier compu-
tational complexity (as recognized by Kohonen [12]) and
merging the groups representing the same cluster [18] (be-
cause the SOM, by approximating the distribution patterns,
1nds more than one prototype representing the same clus-
ter [19]). Moreover, successive SOM results depend on the
training phase and this implies the choice of representative
training examples.

In contrast, ART2 [20] allocates new cluster buckets
whenever they are necessary, permitting lower computa-
tional complexity (see the experiments performed in Ref.
[21]) and 1nds a prototype for each cluster. However, at the
same time, this solution is not straightforward to implement
because it needs to manage too many parameters. ART2 is
used in Ref. [22] to segment multimodality images. This
model, like all others deduced from the ART [23], does not
separate the classi1cation from the learning step. Indeed, it
is always capable of improving its knowledge base when
the current knowledge base is insu5cient. In Ref. [24],
after discussing ART2’s problems (especially management
di5culties), a modi1ed ART1 is suggested and applied to
a LANDSAT image segmentation task. This new approach,
called SART1, makes the ART1 simpler, and gives it the
capacity to handle real value patterns, whilst reducing some
weaknesses in the original model.

Taking into the account the above considerations and the
vast work previously done on image segmentation tech-
niques, our goal has been to 1nd a simple new model able
to instance a single prototype for each cluster (to avoid the
post-processing phase) with a lower computational com-
plexity than the models mentioned above. Among the vari-
ous proposals, we selected the ART1 model [23] despite its
inability to handle real value patterns, because it is very sim-
ple to implement (the number of its parameters is small). The
literature o@ered one ART1-type architecture, called fuzzy
ART [25], which, unfortunately, on closer examination and
direct experience, presented some problems. Our paper sug-
gests a solution to some of these problems and analyzes an
image segmentation task as a case study.

This paper is organized as follows. Section 2 introduces
the fuzzy ART model and its problems. Section 3 describes
the changes applied to the fuzzy ART, the properties of the
new approach we are proposing and a theoretical compar-
ison with other similar models. We have introduced a pat-

tern grouping module for the segmentation system made up
of a feature extractor module together with the network it-
self. Our segmentation system is tested on a real image set
and qualitatively and quantitatively compared to other mod-
els. Results from the implemented algorithm are shown and
discussed in Section 4; while our conclusions are given in
Section 5.

2. The fuzzy art model

Fuzzy ART is a pure winner-takes-all architecture able
to instance output nodes whenever necessary and to handle
both binary and analog patterns. The adjective fuzzy derives
from the functions it uses [26], although it is not actually
fuzzy [27]. In this section, we describe this architecture when
applying it to data clustering (more details can be found in
Ref. [25]).

To perform data clustering, Fuzzy ART behaves like a
Leader algorithm [7], instancing the 1rst cluster coinciding
with the 1rst input and allocating new buckets when nec-
essary (in particular, each output node represents a cluster
from a prototype). Unlike the Leader algorithm, fuzzy ART
prototypes are not constant but can adapt to new inputs (i.e.
they can learn).

Algorithm 1. Fuzzy ART performing data clustering

While a new input exists do
Activate all prototypes
While an active prototipe exists do

Find, with function (1) (see below), the prototype with
greatest compatibility with the input.

Evaluate, with function (2), the compatibility the input
has with the prototype.

If this value is greater than, or equal to, the vigilance
parameter � (�∈ [0; 1]) then
Adjust the prototype with function (3), and skip to

a new input.
else

Inhibit the prototype until the next input (i.e. it will
not compete for the actual input) and try a new

prototype.
Done
If no active prototype exists instance a new one and

skip to
the next input.

Done.

The choice function used by Fuzzy Art is the following:

A(I t ; W t
J ) =

|MIN (I t ; W t
J )|

� + |Wt
J |

=

∑n
i=1 MIN (I ti ; W

t
Ji)

� +
∑n

i=1 Wt
Ji

: (1)

It computes the compatibility between a prototype and
an input. The tth input pattern I t is an n-element vector
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transposed, Wj the prototype of cluster J (both are
n-dimensional vectors), � the choice parameter and MIN
the fuzzy set intersection operator [26]. � is a value greater
than, or equal to, zero and acts as a tie breaker.

The test function M is

M (Wt
J ; I

t) =
|MIN (I t ; W t

J )|
|I t | =

∑n
i=1 MIN (I ti ; W

t
Ji)∑n

i=1 I ti
: (2)

This computes the compatibility between the input and the
selected prototype. The test is passed if this value is greater
than, or equal to, the vigilance parameter �∈ [0; 1]. Intu-
itively, � indicates how similar the input has to be to the
prototype to allow it to be associated with the cluster the
last prototype represents. As a consequence, a greater value
for � implies smaller clusters, a lower value wider clusters.
Let R be the prototype adjusting function, i.e.,

R(I t ; W t
J ) = �MIN (I t ; W t

J ) + (1 − �)Wt
J ; (3)

where the learning parameter �∈ [0; 1) weights the new
and old knowledge, MIN (I t ; W t

j ) and Wt
J , respectively. It is

worth observing that this function is not increasing, that is
Wt+1

Ji 6Wt
Ji ∀i; J .

2.1. Fuzzy ART’s problems

Fuzzy ART su@ers both from problems inherited from the
ART1 model and its own: this section deals with some of
these (partially following Ref. [28]). The problems are:

(a) Functions (1) and (2) only estimate, not measure, the
extent of match between any two patterns: function
(1) computes the match between the prototype and the
input, but not the opposite, function (2) only computes
and tests the match between the input and the prototype.

(b) The 1nal result depends on the input presentation order.
(c) Heavy computational complexity: In general, for each

input, the prototype list is scanned several times to
1nd the best match or to deduce the need for a new
one. However, further improvement could be made by
reducing the single scan computational e@ort.

(d) Over=tting: At the end of the process some proto-
types not representing any cluster could still survive,
these prototypes introduce memory wasting and possi-
bly classi1cation errors.

(e) After analyzing the results of the simulations per-
formed using our implementation, there is evidence
that it is di5cult to obtain a good vigilance parameter.
Some results, in fact, are obtained for large vigilance
intervals only to change, suddenly, near the value of
1. This involves repeated trials and the loss of the
interval’s intuitivity .

(f) Plasticity loss: With complete memory exhaustion, to
protect the knowledge acquired up to that moment, no
novelty is accepted (i.e. no new clusters are instanced).

This approach does not seem to be the most correct
strategy for any application: although knowledge safe-
guarding is a very important objective achieving results
should have precedence.

3. Our approach

To solve the problems shown in the previous section and
to add other improvements, we modi1ed the original fuzzy
ART. Our choice/test function was the one suggested in Ref.
[28], where no analysis, use or simulation is provided. This
function was obtained by multiplying the choice (1) and the
test (2) original fuzzy ART functions. The new choice/test
function is de1ned as

F(I; WJ ) =
[|MIN (I; WJ )|]2

|I | · |WJ | =
[
∑n

i=1 MIN (Ii; WJi)]2∑n
i=1 Ii · ∑n

i=1 WJi
: (4)

It is worth stressing that the use of function (4) places our
model approach in the SART framework [24], although it is
di@erent from the SART1 [24] and fuzzy SART [28] (where
Kohonen’s strategies are exploited).

Function (4) ensures that, if the cluster with the greatest
compatibility does not satisfy the test, no other cluster can.
As a consequence, we can eliminate the repeated prototype
list scanning and, hence reduce computation costs. It is not
simple to estimate the gain as a function of the reduced
list scanning because it is also impossible to estimate this
cost with the original fuzzy ART. In any case, while our
algorithm needs just one scan for each input, the original
fuzzy ART, in the worst case, needs k ones, where k is the
prototype list dimension (so, intuitively, there is a gain from
O(k2) to O(k).

Algorithm 2. Proposed model for data clustering

While a new input exists do
Find, with function (4), the prototype with greatest com-

patibility with the input and vice versa.
Evaluate, using function (2), the compatibility between
the input and the prototype.

If this value is greater than, or equal to, the vigilance
parameter � (�∈ [0; 1]) then
Adjust the prototype with function (3), and skip to a

new input..
Instance a new prototype.

Done.

Function (4), used to compute the choice and perform the
test at the same time, has the interesting property of reducing
the problems related to the presentation order of the input
patterns.

This is possible because it tests the match between the
prototype and the input and, at the same time, its opposite,
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so the prototypes need not undergo heavy shifts. Indeed,
with the original function, it could be possible to choose a
prototype which is not so compatible with the input (despite
being greater) but is still be able to pass the test. When
adjusting this prototype against the input, it could lose part of
its structure thereby undergoing a large shift. Although this
function reduces this problem, it does not solve it because
the results depend on the vigilance parameter as well.

In addition, function (4) makes searching for the vigi-
lance parameter and eliminating the choice parameter sim-
pler. However, it is worth observing that it is not trans-
lation invariant: any normalization solves the problem, as
we have found. In particular, we use complement coding
scheme [25], which guarantees that the length of all input
vectors are identical.

Theorem 1. Complement coding makes function (4)
translation invariant.

Proof. Let I1 =(A; B; 1−A; 1−B) andW1 =(E; F; G; H) be
the 1rst couple, and I2=(A+C; B+D; 1−(A+C); 1−(B+D))
and W2 = (E + C; F + D;G − C;H − D) the second one,
where A and B are real numbers in the range [0,1], while C
and D are negative or positive real numbers. The choice/test
function for the 1rst couple becomes.

F(I1; W1) =
[
∑n

i=1 MIN (Ii; WJi)]2∑n
i=1 Ii · ∑n

i=1 WJi

=
[MIN (A; E) +MIN (B; F) +MIN ((1 − A); G) +MIN ((1 − B); H)]2

2(E + F + G + H)
: (5)

For the second couple, we obtain

F(I2; W2)

=
[MIN (A+ C; E + C) +MIN (B + D; F + D) +MIN (1 − (A+ C); G − C) +MIN (1 − (B + D); H − D)]2

2[(E + C) + (F + D) + (G − C) + (H − D)]

=
[MIN (A; E) + C +MIN (B; F) + D +MIN ((1 − A); G) − C +MIN ((1 − B); H) − D]2

2[E + C + F + D + G − C + H − D]

=
[MIN (A; E) +MIN (B; F) +MIN ((1 − A); G) +MIN ((1 − B); H)]2

2(E + F + G + H)
: (6)

We use the original fuzzy ART adjusting function but
within a fast learning asset, which is obtained with �=1. It is
worthwhile stressing that fast learning may not be adequate
in some scenarios where it could be substituted with the fast
commit and slow recode strategy [25]. Fast learning seems
suitable for our test set.

After having achieved the terminating condition, un-
required prototypes are discarded. Our implementation
provides a variable for each prototype, with the purpose
of establishing whether the correspondent cluster has
been allocated during the current set presentation or a

previous one. This tool avoids eliminating the clusters al-
located for previous sets not required by the current one.
Our implementation erases the unrequired prototypes when
the terminating condition is obtained and not at the end of
each presentation as in Ref. [28]. According to our exper-
iments, these two strategies achieve the same results with
some computational savings by performing it on reaching
the terminating condition.

To resolve plasticity loss a prototype not yet requested for
the set in input could give up its place to a new one. Since the
repeated prototype list scanning has been eliminated, further
improvements ensue, thereby reducing single scan computa-
tional complexity [29]. To attain this improvement the Hebb
competitive rule [30] was applied: by keeping a pointer on
the winner of the previous presentation, the search could be
limited to a single prototype and its neighborhood. This is
possible because this rule creates a topological organization
among the clusters, keeping an adjacent relations set among
the prototypes. The strategy consists in comparing the value
returned by function (4) for the pointed prototype with those
returned for its neighboring ones. If the pointed prototype’s
value is greater than the other ones’, it is the winner. Other-
wise, the prototype with the greatest value and its neighbor-
hood has to be tested. It is worth noting that some of these

prototypes have been already tested. This strategy has some
usefulness because function (4) does not allow large proto-
type shifting. Nevertheless, it is not possible to discuss in
detail what this strategy’s performance may be because in
general, the neighborhood is small and not constant . Pro-
totypes are free to shift and no longer valid relations are
eliminated: in the worst case all prototypes are tested like
in the original strategy.

To obtain better clustering performance, we used the
strategy described in Ref. [31]. This strategy consists in
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imposing two vigilance parameters. Clusters of real data are
usually not compact and well distanced, with the risk of
misclassifying those points a little more distant than nor-
mal. This strategy allows the problem to be solved and to
obtain other bene1ts. In fact, besides solving the problem, it
allows faster results by choosing a parameter next to 1 and
another parameter as the vigilance value, thereby reducing
the algorithm to the Leader parameter. By limiting the up-
dating it is possible to get results in only one or two process
cycles. The same strategy allows valuable rough results to
be quickly obtained.

Quick results can be also obtained with the follow-
ing tout-court strategy. Since the terminating condition is
achieved when further presentation of the current input set
does not modify the prototypes, it could discard already
labeled patterns whose prototypes were not modi1ed in
the last presentation. Supposing that major changes occur
during the 1rst cycles, the process could terminate in two
or three cycles. Almost accurate results are guaranteed by
function (4), which does not allow heavy prototype shifts.
Given that this strategy is applied to labeled patterns and
not to new ones, it does not stop plasticity, unlike those
models which reduce the learning parameter [12,24,28].

After having presented the changes we applied, we need
proof that the clustering algorithm performed by our modi1-
cation converges in a 1nite number of cycles. The terminat-
ing condition is obtained when all prototypes have reached
a stable position, that is, when no new presentation of the
same set can modify it. To prove this statement it becomes
necessary to introduce some de1nitions.

De nition 1 (Sub-pattern). Pattern A is B’s sub-pattern
i@ every A’s element is lower than its correspondent in
B(Ai ¡Bi ∀i).

De nition 2 (Mixed pattern). Pattern A is B’s mixed pat-
tern i@ some of A’s elements are greater than, or equal to,
their correspondents in B while for the rest it is the reverse
(∃i Ai ¡Bi & ∃j Aj ¿Bj).

Theorem 2. Fast learning and complement coding imply
|WJ |¿ n�, where n is the pattern length.

Proof. For t = 1 (initialization step):

|WJ | = |I | = n ⇒ |WJ |¿ n� (�6 1):

For t ¿ 1, the test is passed if

[|MIN (I; WJ )|]2
|I | · |WJ | =

[|MIN (I; WJ )|]2
n · |WJ |

¿ � ⇔ [|MIN (I; WJ )|]2
|WJ | ¿ n�:

Fast learning implies

Wt+1
J =MIN (I t ; W t

J ):

So, the condition for passing the test becomes

|Wt+1
J | · |Wt+1

J |
|Wt

J |
¿ n�:

From which it is possible to conclude (as |Wt+1
J |=|Wt

J |6 1):

|Wt+1
J |¿ |Wt+1

J | · |Wt+1
J |

|Wt
J |

¿ n� ⇒ |WJ |¿ n�:

Theorem 2 also proves that the category proliferation
problem [32] is solved with complement coding.

Theorem 3. From the second input presentation and the
following, the test is automatically passed by adopting fast
learning and complement coding.

Proof. After the 1rst input presentation, when choosing
the cluster with the greatest compatibility, two situations
could arise: a sub-pattern choosing or a mixed pattern
choosing (due to the fast learning and complement coding,
super-patterns do not exist).

Choosing sub-pattern WJ implies

[|MIN (I; WJ )|]2
|I | · |WJ | =

|MIN (I; WJ )|
|I | =

|WJ |
n

;

|WJ |¿ n� (Theorem 2) ⇒ |WJ |
n
¿ �:

Mixed pattern choosing is possible only if the choice/test
function returns a greater value than that returned for a
sub-pattern. This sub-pattern must exist because of the up-
dating carried out in the previous presentation and the no
growth property of the adjusting function. If a subpattern
had been chosen it would have passed the test as would the
mixed pattern.

Theorem 3, to which no new cluster bucket can be added
from the second presentation onwards, also states an upper
limit for cluster numbers. This is an upper limit only because
there could be some prototypes that do not represent any
cluster, given that the fuzzy ART model can su@er from
over1tting.

Theorem 4. The clustering algorithm performed by our
modi=cation converges in a =nite number of cycles.

Proof. Since from the second input presentation and on-
wards the established cluster number cannot increase (The-
orem 3) and as the prototypes are distinctive and downer
bounded (Theorem 2, where the adjusting function is not
growing), the clustering algorithm performed by our modi-
1cation terminates in a 1nite number of cycles.

Our modi1cation when compared with the original fuzzy
ART, implies lower computational complexity, greater
simplicity in searching for the vigilance parameter, less
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presentation order problems, lower probability of misclassi-
1cation and less memory wasting. In particular, less compu-
tational complexity is made possible by: function (4) (which
allows the prototype list to be scanned only once for each
input), by the topological organization (which allows the
duration of the single list scanning to be reduced), and by
the as yet initialized prototype competition not to mention
the automatic test passing (from the second presentation on-
wards).

On comparing our modi1cation with SOM, our model
does not need post-processing to merge the groups repre-
senting the same cluster, or its dimensionality to be 1xed
a priori. This implies less memory wastage (as the SOM
places some prototypes into domains which do not produce
any input [19]) and lower computational complexity (see
experiments performed in Ref. [21]) while its results do not
rely soley on the training set (with the capacity to obtain
better results in a real unsupervised scenario).

4. Experimental results and discussion

Our segmentation system is made up of two modules: the
pattern grouping, obtained with themodi1ed fuzzy ART, and
the feature extractor which assigns a pattern to each pixel
(see Fig. 3). To extract the features we chose a gray level
mean, total and minimum variation operators [33]. These
operators should allow us to discriminate among the di@er-
ent textures and between these and homogeneous regions.
In fact, total and minimum variation should return zero for
homogeneous regions and not zero for textured ones: homo-
geneous regions should be discriminated by di@erent means
and textured ones by di@erent variance (Fig. 1).

To test the performance of our system, several real im-
ages were used and some of the results were compared
with other models. The experiment set included di@erent
domains: views, objects and medical images. Results were

Fig. 1. The proposed segmentation system.

Fig. 2. Average error.

Fig. 3. f(I).

compared with the clustering algorithm performed by the
SOM, and the original fuzzy ART.

All the experiments were conducted by limiting human
interaction to the minimum, setting just one parameter with
intuitive e@ects, without post-processing and image labeling.
Pre-processing was required to transform the pattern values
in the space [0,1], as expected by the fuzzy ART.

Since feature operators extracted values using a window,
3 × 3, 5 × 5, 7 × 7 and 9 × 9 dimensionalities were tried.
Minimum and total variations were exploited averaging their
results in a 3 × 3 window.

Comparisons were made in the following context. Orig-
inal fuzzy ART was simulated by an original implementa-
tion. It was used in the fast learning asset (with �=1) with �
set to zero. Values for the vigilance parameter � were found
by trials. It is worth observing that we were not able to get
good results due to di5culties in setting the vigilance pa-
rameter. In particular, we will show the results obtained with
� = 0:99999997019 which allows two regions to be found
(for �=0:9999999702 more than 256 regions were found).
SOM was simulated by the SOM pak [34]. The param-

eters were set by following the suggestions given in Ref.
[35]. In particular, we used a rectangular map with two train-
ing stages: the 1rst was made in 1000 steps, with 0.9 as a
learning parameter and a half map as a neighborhood, and
the second in 500 steps, with 0.009 as a learning parameter
and three units as a neighborhood. Map size was chosen by
trials (Figs. 2, 3).
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(a) (b)

(c) (d)

Fig. 4. (a) Original image, (b,c,d) result obtained by applying self-organizing maps, the original fuzzy ART model and the modi1ed fuzzy
ART model, respectively.

(a)

(c) (d)

(b)

Fig. 5. (a) Original image, (b,c,d) result obtained by applying self-organizing maps, the original fuzzy ART model and the modi1ed fuzzy
ART model, respectively.

4.1. Experimental results on real images

Fig. 4a shows an image with three di@erent irregular tex-
tures (sky, earth and sea). Figs. 4b–d show results for SOM,
original fuzzy ART and our approach.

Fig. 5a shows an image whose principal entities (sky,
smoke, airplanes) were almost homogeneous in the intensity
of their gray level. Figs. 5b–d show results for SOM, theo-
riginal fuzzy ART and the modi1ed ART. It is worthwhile
observing that the airplanes, by constituting similar regions
according to a perception criterion, are grouped under the
same label, because clustering is not able to discriminate
between similar but unconnected regions.

Fig. 6a shows an image whose principal entities (street,
kennels and bushes) are not simple to obtain because made
up of di@erent percepted parts [17]. Figs. 6b and c show
the results, respectively, for the SOM and the original fuzzy
ART. Fig. 6d shows the result obtained with our system.
Fig. 7a shows an image whose principal entities, as in the

previous 1gure, are not simple to obtain because it is made
up of parts subject to di@erent perceptions [16]. Figs. 7b
and c show the results, respectively, for the SOM and the

original fuzzy ART. Fig. 7d shows the result obtained with
our system.

4.2. Comparisons with other segmentation methods

It is well known that evaluating segmentation results and
comparing segmentation algorithms are not simple tasks
[4,36–39]. However, one of the most widely used criteria for
performance evaluation is whether the system can outline
the desired or important regions in the image. We think the
results obtained by our system can be regarded as reasonably
good and applicable in subsequent processing. In addition,
Haralick and Shapiro [3] point out that good segmentation
results should present simple, uniform and homogeneous re-
gions, without too many small holes and with simple, not
ragged and spatially accurate boundaries. We believe our
results satisfy these requirements. Moreover, our results are
very similar to those produced by conventional clustering
algorithms.

To quantitatively evaluate our experimental results, we
used the function proposed in [40], which improved on the
one proposed in Ref. [41]. This function, incorporating the
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(a) (b)

(d)(c)

Fig. 6. (a) Original image, (b–d) result obtained by applying self-organizing maps, the original fuzzy ART model and the modi1ed fuzzy
ART model, respectively.

(a)

(c) (d)

(b)

Fig. 7. (a) Original image, (b–d) result obtained by applying self-organizing maps, the original fuzzy ART model and the modi1ed fuzzy
ART model, respectively.

heuristic criteria formulated by Haralick and Shapiro, is
de1ned as

f(I) =
1

1000(N × M)

√
R

×
R∑
i=1

[
e2i

1 + log Ai
+

(
R(Ai)
Ai

)]
; (8)

where I is the result to be evaluated, N×M the image size, R
the number of regions found, Ai the size of the ith region, ei
the average error of the ith region and R(Ai) the number of
regions having area Aiei is de1ned as the sum of Euclidean
distances between the features extracted from each pixel and
those for the corresponding cluster. This function allows
the segmentation result to be evaluated without labeling the
image (i.e. without owning the ground truth). The smaller
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(c) (d)

(b)(a)

Fig. 8. (a) Original image, (b–d) result obtained by applying self-organizing maps, the original fuzzy ART model and the modi1ed fuzzy
ART model, respectively.

the value of f(I), the better the segmentation result should
be. More details can be found in Refs. [40,41].

Figs. 2 and 3 summarize the segmentation results, show-
ing the average error (Fig. 2) and f(I) (Fig. 3), for the
SOM, the original and modi1ed fuzzy ART, for the orig-
inal images in Figs. 4–8. While SOM preserves more de-
tails, subdividing the desired region and returning noisy re-
sults, original fuzzy ART suppresses more noise, but hiding
many details at the same time. Our modi1ed fuzzy ART is
a trade-o@ between these two types of behavior, obtaining
lower f(I) values. In addition, o modi1ed fuzzy ART 1nds
a lower number of regions than the SOM but a greater num-
ber than those found by the original fuzzy ART. Moreover,
the proposed method shows a lower average error than the
original fuzzy ART, but a greater one than that obtained by
the SOM. The quantitative and qualitative valuing justi1es
the conclusion that our clustering implementation returns
good segmentation results.

Naturally, as detailed in Fig. 8, minimum and total vari-
ations are not su5cient to discriminate between all textures
[42–44] (as they are very similar to the contrast [45] and
the gray level di@erence statistics [46]), but it is recognized
that in general, di@erent operators correspond to di@erent
images. In this work, speci1c knowledge of the acquisition
process is not applied and we try to demonstrate the valid-
ity of our neural implementation to a greater extent than the
operator’s one.

5. Conclusions

This paper presents a modi1ed fuzzy ART and its appli-
cation to image segmentation. Of the possible approaches

to segmentation, we adopted clustering. Considering the
segmentation process is an ill-de1ned problem, because no
unique analytic solution may be given to a general image
set, research has always proceeded either heuristically or ex-
perimentally to devise ad hoc systems generally applicable
to single working domains.

Our approach, essentially based on neural network com-
putation, i.e., learning capacity, satis1es some of its main
requirements: fast results, fault and noise tolerance. Neural
network models, usually adopted for this approach, are inef-
1cient and our proposal constitutes a good alternative, pro-
viding better performance when solving several problems.
Moreover, our modi1cation is superior to the original fuzzy
ART model, solving some of the problems discussed above.

A pattern grouping module totally independent of the ap-
plication was also proposed. To test its abilities in the image
segmentation context a feature extractor module was devel-
oped.

The segmentation system made up of the modi1ed fuzzy
ART and the feature extractor module, was very simple
to use: the user needs only to act on a single parameter
with intuitive e@ects. This parameter determines the cluster
spreading. As such system does not use speci1c knowledge,
by adopting the most proper operators, it becomes possible
to customize it to di@erent scenarios.

A number of results and comparisons (with other models
present in literature) have been presented. Qualitative and
quantitative valuing con1rms the validity of our approach.
In particular, SOM preserves more details, subdividing the
desired region and returning noisy results, and the original
fuzzy ART suppresses more noise but at the same time hides
many details. Our modi1ed fuzzy ART represents a trade-o@
between these two patterns of behavior, obtaining lower
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values for the function we used to quantitatively evaluate
our results.
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